SingleChip 3－Axis Accelerometer QMA6981

The QMA6981 is a single chip three－axis accelerometer．This surface－mount， small sized chip has integrated acceleration transducer with signal condition ASIC， sensing tilt，motion，shock and vibration，targeted for applications such as screen rotation，step counting，sleep quality，gaming and personal navigation in mobile and wearable smart devices．

The QMA6981 is based on our state－of－the－art，high resolution single crystal silicon MEMS technology．Along with custom－designed 10－bit ADC ASIC，it offers the advantages of low noise，high accuracy，low power consumption，and offset trimming． The $I^{2} \mathrm{C}$ serial bus allows for easy interface．

The QMA6981 is in a $2 \times 2 \times 0.95 \mathrm{~mm} 3$ surface mount 12 －pin land grid array（LGA）package．

FEATURES

－3－Axis Accelerometer in a $2 \times 2 \times 0.95 \mathrm{~mm}^{3}$ Land Grid Array Package（LGA）， guaranteed to operate over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．
－ 10 Bit ADC with low noise accelerometer sensor
－$I^{2} C$ Interface with Standard and Fast modes．
－Built－In Self－Test
－Wide range operation voltage（2．4V To 3.6 V ）and low power consumption （ $220 \mu \mathrm{~A}$ ）
－Integrated FIFO with a depth of 32 frames
－RoHS compliant，halogen－free

BENEFIT

－Small size for highly integrated products． Signals have been digitized and factory trimmed．
－High resolution allows for motion and tilt sensing
－High－Speed Interfaces for fast data communications． Maximum 2000 Hz data output rate
－Enables low－cost functionality test after assembly in production
－Automatically maintains sensor＇s sensitivity under wide operation voltage range and compatible with battery powered applications
－For higher Data－Read rate
－Environmental protection and wide applications
－Low power and easy applications including step counting，sleep quality， gaming and personal navigation

CONTENTS

CONTENTS 2
1 INTERNAL SCHEMATIC DIAGRAM 3
1.1 Internal Schematic Diagram. 3
2 SPECIFICATIONS AND I/O CHARACTERISTICS 4
2.1 Product Specifications 4
2.2 Absolute Maximum Ratings 4
2.3 I/O Characteristics 5
3 PACKAGE PIN CONFIGURATIONS 5
3.1 Package 3-D View 5
3.2 Package Outlines 6
4 EXTERNAL CONNECTION 8
4.1 Dual Supply Connection 8
4.2 Single Supply connection 8
5 BASIC DEVICE OPERATION 9
5.1 Acceleration Sensors 9
5.2 Power Management 9
5.3 Power On/Off Time 9
5.4 Communication Bus Interface $\mathrm{I}^{2} \mathrm{C}$ and Its Addresses 10
5.5 Internal Clock 10
6 MODES OF OPERATION 10
6.1 Modes Transition 10
6.2 Description of Modes 12
7 Functions and interrupts 13
$7.1 \quad$ POL_INT 13
7.2 FOB_INT 14
7.3 STEP/STEP_QUIT INT 14
7.4 TAP_INT 15
7.5 LOW-G_INT 17
7.6 HIGH-G_INT 17
7.7 DRDY_INT 17
$7.8 \quad$ FIFO_INT 18
7.9 Interrupt configuration 19
$8 \quad \mathrm{I}^{2} \mathrm{C}$ COMMUNICATION PROTOCOL 20
$8.1 \quad \mathrm{I}^{2} \mathrm{C}$ Timings 20
$8.2 \quad \mathrm{I}^{2} \mathrm{C}$ R/W Operation 20
9 REGISTERS 21
9.1 Register Map 21
9.2 Register Definition 2433

1 INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

Figure 1. Block Diagram
Table 1. Block Function

Block	Function
Transducer	3 axis acceleration sensor
CVA	Charge-to-Voltage amplifier for sensor signals
Interrupt	Digital interrupt engine, to generate interrupt signal on data conversion, FlFO, and motion function
FIFO	Embedded 32-level FIFO
FSM	Finite state machine, to control device in different mode
I2C	Interface logic data I/O
OSC	Internal oscillator for internal operation
Power	Power block, including LDO

2 SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 Product Specifications

Table 2. Specifications (* Tested and specified at $25^{\circ} \mathrm{C}$ except stated otherwise.)

Parameter	Conditions	Min	Typ	Max	Unit
Supply voltage	AVDD, for internal blocks	2.4	3.3	3.6	V
1/O voltage	DVDD, for IO only	1.7	3.3	3.6	V
Standby current	DVDD and AVDD on.		2		$\mu \mathrm{A}$
Conversion current	All blocks on, device in run state		220	300	uA
Sleep current	For analog, AFE is off, BG, Transducer and oscillator are on or in low power mode. For digital, only counter and FSM are on		55		uA
Deep sleep current	For analog, only BG and oscillator are on For digital, only counter and FSM are on		26		uA
BW	Programmable bandwidth		$\begin{array}{\|c\|} \hline 3.9 \sim 50 \\ 0 \end{array}$		Hz
$\begin{aligned} & \text { Data output rate } \\ & \text { (ODR) } \end{aligned}$	4*BW (ODRH=1)		$\begin{gathered} \hline 15.6 \sim 2 \\ 000 \\ \hline \end{gathered}$		$\begin{gathered} \text { Samples } \\ \hline \text { sec } \\ \hline \end{gathered}$
Conversion time	in full speed		$\begin{aligned} & 1 /\left(4^{*} \mathrm{~B}\right. \\ & \mathrm{W}) \\ & \hline \end{aligned}$		mS
Startup time	From the time when VDD reaches to 90% of final value to the time when device is ready for conversion		2		mS
Wakeup time	From the time device enters into active mode to the time device is ready for conversion		1		mS
Operating temperature		-40		85	${ }^{\circ} \mathrm{C}$
Acceleration Full Range			$\begin{aligned} & +-2 \\ & +-4 \\ & +8 \end{aligned}$		G
Sensitivity	FS $= \pm 2 \mathrm{~g}$		256		LSB/G
Sensitivity	$\mathrm{FS}= \pm 4 \mathrm{~g}$		128		LSB/G
Sensitivity	$\mathrm{FS}= \pm 8 \mathrm{~g}$		64		LSB/G
Sensitivity Temperature Drift	FS $= \pm 2 \mathrm{~g}$, Normal VDD Supplies		± 0.02		\%/K
Sensitivity tolerance	Gain accuracy		+-5		\%
Zero-g offset	FS $= \pm 2 \mathrm{~g}$, Normal VDD Supplies		80		mg
Zero-g offset Temperature Drift	FS $= \pm 2 \mathrm{~g}$, Normal VDD Supplies		2		mg/K
Noise density	FS $= \pm 2 \mathrm{~g}$		800		ug/sqrtHz
Nonlinearity	$F S= \pm 2 \mathrm{~g}$, Best fit straight line,		± 0.5		\%FS
Cross Axis Sensitivity			1		\%

2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at $25^{\circ} \mathrm{C}$ except stated otherwise.)

Parameters	Condition	Min	Max	Units
VDD		-0.3	5.4	V
VDDIO		-0.3	5.4	V
ESD	HBM		2	kV
Shock Immunity	Duration <200uS		10000	Gee
Storage temperature		-50	150	${ }^{\circ} \mathrm{C}$

2.3 I/O Characteristics

Table 4. I/O Characteristics

Parameter	Symbol	Pin	Condition	Min.	TYP.	Max.	Unit
Voltage Input High Level 1	$\mathrm{V}_{\mathrm{H}} 1$	SDA, SCL		$\begin{gathered} 0.7^{*} \mathrm{VD} \\ \text { DIO } \end{gathered}$		$\begin{gathered} \hline \text { VDDIO+ } \\ 0.3 \end{gathered}$	V
Voltage Input Low Level 1	$\mathrm{V}_{\text {IL }} 1$	SDA, SCL		-0.3		$\begin{gathered} 0.3^{*} \mathrm{VD} \\ \text { DIO } \end{gathered}$	V
Voltage Output High Level	$\mathrm{V}_{\text {OH }}$	INT1, INT2	Output Current $\geq-100 \mathrm{uA}$	$\begin{gathered} \hline 0.8^{*} \mathrm{VD} \\ \text { DIO } \\ \hline \end{gathered}$			V
Voltage Output Low Level	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \text { INT1, INT2, } \\ & \text { SDA } \end{aligned}$	Output Current $\leq 100 u A($ INT $)$ Output Current $\leq 1 \mathrm{~mA}$ (SDA)			$\begin{gathered} \hline 0.2^{*} \mathrm{VD} \\ \text { DIO } \end{gathered}$	V

3 PACKAGE PIN CONFIGURATIONS

3.1 Package 3-D View

Arrow indicates direction of G field that generates a positive output reading in normal measurement configuration.

Figure 2. Package 3-D View
Table 5. Pin Configurations

PIN No.	PIN NAME	I/O	Power Supply	TYPE	Function
1	ADO	I	VDD	CMOS	LSB of I ${ }^{2}$ C address
2	SDA	I/O	VLOGIC	CMOS	Serial data for I ${ }^{2}$ C
3	VDDIO			Power	Power supply for digital interface
4	NC				Not Open to Customer
5	INT1	O	VLOGIC	CMOS	Interrupt 1
6	INT2	O	VLOGIC	CMOS	Interrupt 2
7	VDD			Power	Power supply to internal block
8	GNDIO			Power	Ground for digital interface
9	GND			Power	Ground for internal block
10	NC				Not Open to Customer
11	NC				Not Open to Customer
12	SCK	I	VLOGIC	CMOS	Serial clock for I I'C

3.2 Package Outlines

3.2.1 Package Type

LGA (Land Grid Array)
3.2.2 Package Outline Drawing:
2.0 mm (Length)*2.0mm (Width)*0.95mm (Height)

SYMBOL	DIMENSION (MM)			DIMENSION (inch)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	090	0.95	1.00	0.035	0.037	0.039
C	0.16	0.20	0.24	0.006	0.008	0.009
b	020	0.25	0.30	0.008	0.010	0.012
D	1.95	2.00	2.05	0.077	0.079	0.081
D1	1.525 BSC			0.060 BSC		
E	1.95	2.00	2.05	0.077	0.079	0.081
E1	1.50 BSC			0.059 BSC		
e	0.50 BSC			0.020 BSC		
L	0.225	0.275	0.325	0.010	0.012	0.014

Figure 3. Package Outline Drawing

3.2.3 Marking:

Figure 4. Chip Marking
Marking format and specification:

1) Laser marking, marking font: Arial
2) Marking dimensions: (Unit: mm)

	A	B	C	D	E	F	G	H	Pin 1	Letter style
Customer(T)	2	1.4	0.3	0.65	1.175	1.7	2	0.3	0.3	Arial
ChipMOS(T)	2	1.38	0.283	0.662	1.171	1.667	2	0.294	0.296	Arial

3) Offset tolerance: $\pm 0.2 \mathrm{~mm}$
4) Marking definition:

Marking Text	Description	Comments
Line 1	Product Name	4 alphanumeric digits stand for product serials, such as "6981" stand for QMA6981 serials product.
Line 2	Y: the last digital of year CCC: lot code	3 alphanumeric digits, variable to generate mass production trace-code
Line3	P: Part number S: Sub-con ID	P: 1 alphanumeric digits, fixed to identify part number, such as "A" stand for the part number QMA6981A2. S: 1 alphanumeric digits, variable identify sub-con, such as "C" stand for ChipMOS.
	Pin 1 identifier	Pin1 marking is positioned accordingly with unfilled-corner PIN on substrate.

4

EXTERNAL CONNECTION

4.1 Dual Supply Connection

Figure 5. Dual Supply Connection

4.2 Single Supply connection

Figure 6. Single Supply Connection

5 BASIC DEVICE OPERATION

5.1 Acceleration Sensors

The QMA6981 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. With a DC power supply is applied to the sensor two terminals, the sensor converts any accelerating incident in the sensitive axis directions to a differential voltage output.

5.2 Power Management

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. There is no limitation on the voltage levels of VDD and VDDIO relative to each other, as long as they are within operating range.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.
To make sure the POR block functions well, we should have such constrains on the timing of VDD.
The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states. Transitions between power state 2 and power state 3 are prohibited, due to leakage current concerns.

Table 6: Power States

Power State	VDD	VLOGIC	Power State description
1	OV	0 V	Device Off, No Power Consumption
2	0 V	$1.7 \mathrm{v} \sim 3.6 \mathrm{v}$	Device Off, Unpredictable Leakage Current on VLOGIC due to Floating Node.
3	$2.4 \mathrm{v} \sim 3.6 \mathrm{v}$	0	Device Off, Same Current as Standby Mode 4 $2.4 \mathrm{v} \sim 3.6 \mathrm{v}$

5.3 Power On/Off Time

After the device is powered on, some time periods are required for the device fully functional. The external power supply requires a time period for voltage to ramp up (PSUP), it is typically 50 milli-second. However it isn't controlled by the device. The Power -On -Reset time period (PORT) includes time to reset all the logics, load values in NVM to proper registers, enter the standby mode and get ready for analogy measurements. The power on/off time related to the device is in Table 7.

Table 7. Time Required for Power On/Off

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
POR Completion Time	PORT	Time Period After VDD and VLOGIC at Operating Voltage to Ready for I I' Commend and Analogy Measurement.			350	uS
Power off Voltage	SDV	Voltage that Device Considers to be Power Down.			0.2	V
Power on Interval	PINT	Time Period Required for Voltage Lower Than SDV to Enable Next POR	100			uS

Power On/Off Timing
Figure 7. Power On/Off Timing

5.4 Communication Bus Interface $\mathrm{I}^{2} \mathrm{C}$ and Its Addresses

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via $l^{2} \mathrm{C}$.

This device is compliant with $I^{2} \mathrm{C}$-Bus Specification, document number: 939839340011 . As an $I^{2} \mathrm{C}$ compatible device, this device has a 7 -bit serial address and supports $I^{2} \mathrm{C}$ protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz , respectively. External pull-up resistors are required to support all these modes.

There are two $I^{2} C$ addresses selected by connecting pin 1 (ADO) to GND or VDD. The first six MSB are hardware configured to "001001" and the LSB can be configured by ADO.

Table 8. I2C Address Options

ADO (pin 10)	I $^{2} \mathbf{C}$ Slave Address(HEX)	I 2 C Slave Address(BIN)
Connect to GND	12	0010010
Connect to VDD	13	0010011

If more $\mathrm{I}^{2} \mathrm{C}$ address options are required, please contact factory for metal layer changes.

5.5 Internal Clock

The device has an internal clock for internal digital logic functions and timing management. This clock is not available to external usage.

6 MODES OF OPERATION

6.1 Modes Transition

The device has two different operational modes, controlled by register $(11 \mathrm{H})$, mode bit. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through $I^{2} \mathrm{C}$ commends of changing mode bits. The default mode is Standby.

Figure 8. Basic operation flow after power-on
The default mode after power on is standby mode. Through I2C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing $0 \times B 6$ into register 0×36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD ($0 \times 33<3>$) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

Figure 9. The work mode transferring

6.2 Description of Modes

6.2.1 Active Mode

In active mode, there are two states, run state, and sleep state.

6.2.1.1 Sleep State

In sleep state, whole signal chain is off, including analog and digital signal conditioning. And the rest blocks are on, including REF and OSC.

6.2.1.2 Run State

In run state, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data into FIFO (accessible through register 0x3F) and Data registers ($0 \times 01 \sim 0 \times 06$). After the signal conditioning, the signal chain will be off and ASIC enters back into sleep state, leaves timer and FSM on. Also in sleep state, reference and power blocks are on. This mode can also be called as power cycling. The power cycling duty is configurable through state registers SLEEP_DUR ($0 \times 11<3: 0>$). Device can enter into active mode by setting MODE_BIT ($0 \times 11<7>$) to logic 1 .
Besides the power cycling, device can also be configured as FULLRUN, by setting SLEEP_DUR=0000b. In this setting, no sleep state in the active mode, and device consumes most power, deliver the data most frequently.

6.2.1.3 Self-test State

In active mode, when user set SELFTEST_BIT ($0 \times 32<7>$) to logic 1, ASIC will generate self-test signal onto the transducer, which transfer to electro-static force, to move the transducer. SELF_TEST_SIGN ($0 \times 32<2>$) is used to set the force to negative.
For proper function of self-test, user should set SELFTEST_BIT to logic 1 for at least 4 mS , for the settling of transducer due to self-test force.
User can compare the data before self-test with that after self-test. If the difference between these two data is larger than value listed in following, the device functions well. Also, please make sure that no external acceleration is added on the device.

	X axis	Y axis	Z axis
Effective self-test signal	0.3 g	0.3 g	0.3 g

After done the self-test, please set the SELFTEST_BIT back to logic 0 .

6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through I2C. Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to $0 \times B 6$ or set the MODE_BIT ($0 \times 11<7>$) to logic 0 .
Besides the above two modes, device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM_LOAD ($0 \times 33<3>$) is set to 1 , NVM loading starts. When device is in NVM loading state, NVM_RDY ($0 \times 33<2>$) is set to logic 0 by device. After NVM loading finished, NVM_RDY ($0 \times 33<2>$) is set back to logic 1 by device, and NVM_LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM_LOAD is set to 1 in active mode. If user set this NVM_LOAD bit to 1 in standby mode, device will not take the action until the device enters into active state by setting MODE_BIT ($0 \times 11<7>$) to logic 1 .
After loading NVM, the device will enter into standby mode directly.
The loading time for NVM is about 100 uS .

7 Functions and interrupts

ASIC support interrupts, such as POL_INT, FOB_INT (4D/6D), FLAT_INT, FF_INT, TAP_INT, SHK_INT, SLO_NO_MOT_INT, DRDY_INT, FIFO_INT, LPF, etc. (these functions are first priority) Also we support SLOPE_INT, HPF, high-g?, low-g, I2C watch dog timer, etc. (these functions are second priority) If necessary, we support Master I2C and FIFO for mag. (these are third priority)
And, if necessary, we support SPI. (this is fourth priority)

7.1 POL_INT

The POL_INT stands for Portrait or Landscape interrupt, responses to the device in portrait direction or landscape direction. It includes 4 different event types, left, right, up and down events. The different type event stored and can be read from register ORIENT ($0 \times 0 \mathrm{D}<2: 0>$).

POLA(0x0D<2:0>)	Left	Right	Down	Up	comments
000	0	0	0	0	unknown
001	1	0	0	0	Left/Landscape
010	0	1	0	0	Right/Landscape
101	0	0	1	0	Down/portrait
110	0	0	0	1	Up/portrait

All different event can be detected by comparing the threshold set by register UD_X_TH(0x2D),RL_Y_TH(0x2F) with the sensor data, also have dependency on comparing result between the Z sensor readings and the register UD_Z_TH(0x2C) and RL_Z_TH(0x2E). Hysteresis can be introduced to the angle by decreasing a small offset for the threshold registers. All angle data inside the Hysteresis area will be regarded as unknown status in the orient status register ($0 \times 0 \mathrm{D}<2: 0>$).

Below Table shows the condition for kinds of orient events generation, the default threshold for X, Y is set to 40 degrees

Event	X		Y		Z		
Up	$\|X\|>U D _X _$TH	$\mathrm{X}<0$			\|Z	<UD_Z_TH	
Down	\|X	>UD_X_TH	X >0			\|Z	<UD_Z_TH
Right			\|Y	>RL_Y_TH	$\mathrm{Y}<0$	\|Z	<RL_Z_TH
Left			\|Y	>RL_Y_TH	$\mathrm{Y}>0$	\|Z	<RL_Z_TH

For the registers settings, all the orient events threshold 1 LSB bit stand for 3.9 mg . For Z axis, it is 8 -bit signed 2's complement number ranged from 0.3 g to 1.29 g , default value 0 as stands for 0.8 g . X, Y axis are unsigned data, default value A4 stands for 640 mg which angel be regards as 40 degree ,there will be around 10 degree dead band left. The degree value for event can be calculated by the equal arcsin(0.0039*ud_x_th) or $\arcsin \left(0.0039 * r l _y _t h\right)$.

The related interrupt status bit is ORIENT_INT ($0 \times 09<6>$). When the POL status changed, the value of ORIENT_INT will be set to logic 1, and this will be cleared after the interrupt status register is read by user. ORIENT_EN ($0 \times 16<6>$) is the enable bit for the POL_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_ORIENT ($0 \times 19<6>$) or INT2_OXRIENT ($0 \times 1 \mathrm{~B}<6>$) to logic 1 , to map the internal interrupt to the interrupt PINs.

7.2 FOB_INT

The Front/back event detected by comparing Z axis data with a low g value, ranged from 0.1 g to 0.6 g , which is defined by FB_Z_TH(0×30). The comparing condition shows below:

Event	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Front			$\|Z\|>$ FB_TH Z >0
Back			$\|Z\|>$ FB_TH Z <0

The 2 different type events are stored and can be read from register ORIENT ($0 \times 0 \mathrm{D}<4: 3>$)

FOB $(0 \times 0 \mathrm{D}<4: 3>)$	status
00	unknown
01	Front
10	Back
11	Reserved

Angle between the Z-axis and g can have the relationship:
Acc_Z=1g X cos(theta).
Each threshold will introduce a dark area, which the Front/Back status cannot be recognized, the dark area angel is +/- (90-theta).
When the threshold register value is 0×00, the default value stands for 0.1 g , and 1 LSB is 2 mg . the minimum angel between sensor and g direction should be 84 degree, so the dark area should be $+/-6$ degree. When the value is 0xFF, the dark area should be $+/-37$ degree.
The related interrupt status bit is FOB_INT ($0 \times 09<7>$). When the FOB status changed, the value of FOB_INT will be set to logic 1, and this will be cleared after the interrupt status register is read by user. FOB_EN ($0 \times 16<6>$) is the enable bit for the FOB_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_FOB ($0 \times 19<7>$) or INT2_FOB ($0 \times 1 \mathrm{~B}<7>$) to logic 1 , to map the internal interrupt to the interrupt PINs.

7.3 STEP/STEP_QUIT INT

The STEP/STEP_QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated.

Figure 10. STEP/STEP_QUIT

Median data ($\max +\mathrm{min}$) $/ 2$ is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP_SAMPLE_CNT (0x12). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected.
Register STEP_PRECISION (0×13) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection. The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP_TIME_UP(0x15) and STEP_TIME_LOW(0x14), the conversion ODR numbers ranged from STEP_TIME_LOW *ODR to 8^{*} STEP_TIME_UP*ODR. Also if no new run step event detected until the up limited timing threshold, STEP_QUIT INT will generation.
To remove unstable variation which will cause failing STEP event detection, only after 4 continuous step detected, it will be considered as valid step events , also the step counter register STEP_CNT_LSB/ STEP_CNT_MSB ($0 \times 1 \mathrm{C}, 0 \times 1 \mathrm{D}$) will updated immediately by value 4 , interrupt STEP is generated as well.
The related interrupt status bit is STEP_INT $(0 \times 0 \mathrm{~A}<4>)$ and STEP_QUIT_INT ($0 \times 0 \mathrm{~A}<3>$). When the interrupt is generated, the value of STEP_INT/ STEP_QUIT_INT will be set to logic 1, and this will be cleared after the interrupt status register is read by user. STEP_EN/STEP_QUIT_EN ($0 \times 16<3>/ 0 \times 16<2>$) is the enable bit for the STEP_INT/STEP_QUIT_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP ($0 \times 1 \mathrm{~A}<3>$)/INT1_STEP_QUIT ($0 \times 19<2>$) or INT2_STEP ($0 \times 1 \mathrm{~A}<4>$)/INT2_STEP_QUIT ($0 \times 1 \mathrm{~B}<2>$) to logic 1 , to map the internal interrupt to the interrupt PINs.

7.4 TAP_INT

Tap detection allows the device to detect the events such as clicking or double clicking of a touch-pad. A tap event is detected if a pre-defined slope (absolute value of acceleration difference) of the acceleration of at least one axis is exceeded. The tap detection includes single tap (TAPS) and double tap (TAPD). A 'Single tap' is a single event within a certain time, followed by a certain quiet time. A 'double tap' consists of a first such event followed by a second event within a defined time frame.
Single tap interrupt can be enabled (disabled) by setting '1' (' 0 ') to bit (0×16) S_TAP_EN. The double tap detection can be enabled (disabled) by setting ' 1 ' (' 0 ') to (0×16) D_TAP_EN.
The status of single tap interrupt is stored in ($0 \times 0 \mathrm{~A}$) S_TAP_INT, the status of double tap interrupt is stored in (0x0A) D_TAP_INT.
The slope threshold for detecting a tap event is set by register ($0 \times 2 \mathrm{~B}$) TAP_TH. The meaning of an LSB of ($0 \times 2 \mathrm{~B}$) TAP_TH depends on the selected g-range: 1 LSB of the ($0 \times 2 \mathrm{~B}$) TAP_TH is 62.5 mg in 2 g -range, 125 mg in 4 g -range, 250 mg in 8 g -range.
In figure the timing for single tap and double tap is visualized:

Figure 11. Timing of tap detction
The parameters ($0 \times 2 A$) TAP_SHOCK and ($0 \times 2 A$) TAP_QUIET are effect in both single tap and double tap detection, while ($0 \times 2 A$) TAP_DUR is effect in double tap detection only. Within the duration of ($0 \times 2 A$) TAP_SHOCK, any slope exceeding ($0 \times 2 \mathrm{~B}$) TAP_TH after the first event will be ignored. Contrary to this, within duration of ($0 \times 2 \mathrm{~A}$) TAP_QUIET, no slope exceeding ($0 \times 2 \mathrm{~B}$) TAP_TH must occur, otherwise the first event will be cancelled.
A single tap interrupt is generated after the combined duration of ($0 \times 2 \mathrm{~A}$) TAP_SHOCK and ($0 \times 2 \mathrm{~A}$) TAP_QUIET. The interrupt is cleared after a delay of 12.5 ms .
A double tap interrupt is generated if an event fulfilling the conditions for a single tap occurs within the duration defined by (0×2 A) TAP_DUR after the completion of the first tap event. The interrupt is cleared after a delay of 12.5 ms .

For each of parameter (0×2 A) TAP_SHOCK and (0×2 A) TAP_QUIET two values are selectable. By writing ' 0 ' (' 1 ') to bit ($0 \times 2 \mathrm{~A}$) TAP_SHOCK, the duration of ($0 \times 2 \mathrm{~A}$) TAP_SHOCK is set to 50 ms (75 ms). By writing ' 0 ' (' 1 ') to bit ($0 \times 2 \mathrm{~A}$) TAP_QUIET, the duration of ($0 \times 2 \mathrm{~A}$) TAP_QUIET is set to 30 ms (20 ms).
The duration of ($0 \times 2 A$) TAP_DUR can be set by ($0 \times 2 A$) TAP_DUR bits:

TAP_DUR	Duration of TAP_DUR
000	50 ms
001	100 ms
010	150 ms
011	200 ms
100	250 ms
101	375 ms
110	500 ms
111	700 ms

The axis which triggered the interrupt is indicated by bits ($0 \times 0 \mathrm{~B}$) TAP_FIRST_X, ($0 \times 0 \mathrm{~B}$) TAP_FIRST_Y, and ($0 \times 0 \mathrm{~B}$) HIGH_FIRST_Z. The bit corresponding to the triggering axis contains a ' 1 ' while the other bits hold a ' 0 '. These bits hold until new interrupt is triggered.
The sign of the triggering acceleration is stored in bit ($0 \times 0 B$) TAP_SIGN. If the ($0 \times 0 \mathrm{C}$) HIGH_SIGN = '0' (' 1 '), the sign is positive (negative). This bit holds until new interrupt is triggered.

7.5 LOW-G_INT

The low-g interrupt is based on the comparison of acceleration data against a low-g threshold for the detection of free-fall.
The low-g interrupt is enabled (disabled) by writing logic ' 1 ' ('0') to bits (0×17) LOW_EN. There are two modes available, 'single' mode and 'sum' mode. In 'single' mode, the acceleration of each axis is compared with the threshold; in 'sum' mode, the sum of absolute value of all accelerations \mid acc_x $|+|$ acc_y $|+|$ acc_z \mid is compared with the threshold. The mode is selected by the contents of the (0×24) LOW_MODE bit: ' 0 ' means 'single' mode, ' 1 ' means 'sum' mode.
The low-g threshold is set through the (0×23) LOW_TH register. 1 LSB of ($0 x 23$) LOW_TH always corresponds to an acceleration of 7.81 mg (increment is independent from g-range setting).
A hysteresis can be set with the (0×24) LOW_HYST bits. 1 LSB of (0×24) LOW_HYST always corresponds to an acceleration of 125 mg (as well, increment is independent from g-range setting).
The low-g interrupt is generated if the absolute values of the acceleration of all axes ('and' relation, in case of 'single' mode) or their sum (in case of 'sum' mode) are lower than the threshold for at least the time defined by the (0×22) LOW_DUR register. The interrupt is reset if the absolute value of the acceleration of at least one axis ('or' relation, in case of 'single' mode) or the sum of absolute values (in case of 'sum' mode) is higher than the threshold plus the hysteresis for at least one data acquisition. The relation between the content of (0x25) LOW_DUR and the actual delay of the interrupt generation is delay $=\left[(0 \times 22) L O W _D U R+1\right]^{*} 2 \mathrm{~ms}$. The interrupt status is stored in bit (0x0B) LOW_INT.

7.6 HIGH-G_INT

The high-g interrupt is based on the comparison of acceleration data against a high-g threshold for the detection of shock or other high-acceleration events.
The high-g interrupt is enabled (disabled) per axis by writing logic '1' (' 0 ') to bits (0×17) HIGH_EN_X, (0×17) HIGH_EN_Y, and (0×17) HIGH_EN_Z, respectively. The high-g threshold is set through the $\overline{(0 \times 26})$ HIGH_TH register. The meaning of an LSB of (0x26) HIGH_TH depends on the selected g-range: it corresponds to 7.81 mg in 2 g -range (15.63 mg in 4 g -range, 31.25 mg in 8 g -range).
A hysteresis can be set with the (0×24) HIGH_HYST bits. Analogously to the (0×26) HIGH_TH, the meaning of an LSB of (0×24) HIGH_HYST depends on the selected g-range: it corresponds to 125 mg in 2 g -range (250 mg in 4 g -range, 500 mg in 8 g -range).
The high-g interrupt is generated if the absolute value of the acceleration data of at least one of the enabled axes ('or' relation) is higher than the threshold for at least the time defined by the (0×25) HIGH_DUR register. The interrupt is reset if the absolute value of the acceleration of all enabled axes ('and' relation) is lower than the threshold minus the hysteresis. The relation between the content of (0×25) HIGH_DUR and the actual delay of the interrupt generation is delay $=\left[(0 \times 25) \mathrm{HIGH} _D U R+1\right]^{*} 2 \mathrm{~ms}$.
The interrupt status is stored in bit $(0 \times 09) \mathrm{HIGH}_{-} \mathrm{INT}$. The axis which triggered the interrupt is indicated by bits ($0 \times 0 \mathrm{C}$) HIGH_FIRST_X, ($0 \times 0 \mathrm{C}$) HIGH_FIRST_Y \bar{Y}, and ($0 \times 0 \mathrm{C}$) HIGH_FIRST_Z. The bit corresponding to the triggering axis contains a ' 1 ' while the other bits hold a ' 0 '. These bits hold until new interrupt is triggered. The sign of the triggering acceleration is stored in bit ($0 \times 0 \mathrm{C}$) HIGH_SIGN. If the ($0 \times 0 \mathrm{C}$) HIGH_SIGN = '0' (' 1 '), the sign is positive (negative). This bit holds until new interrupt is triggered.

7.7 DRDY_INT

The width of the acceleration data is 10 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 11 to bit 4) and the LSB part (one byte contains bit 3 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS ($0 x 21<6>$) to logic 0 . This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user. Also user should note that, even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point. If user need all of the 3 axes data from the same time point, please use FIFO. Detailed information, user can refer to 6.8.
If SLEEP_DUR is set to be 0000, then the data can be filtered by low-pass filter, with bandwidth is set by BW ($0 \times 10<4: 0>$). If SLEEP_DUR is set to be other values, the data also can be averaged in different way (set by BW). In any conditions, the data stored in data registers are offset-compensated.

The device supports four different acceleration measurement ranges. The range is setting through RANGE ($0 \times 0 \mathrm{~F}<3: 0>$), and the details as following:

RANGE	Acceleration range	Resolution
0001	2 g	$3.9 \mathrm{mg} / \mathrm{LSB}$
0010	4 g	$7.8 \mathrm{mg} / \mathrm{LSB}$
0100	8 g	$15.6 \mathrm{mg} / \mathrm{LSB}$
Others	Reserved	$0.98 \mathrm{mg} / \mathrm{LSB}$

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, when SLEEP_DUR is not set to 0000b. When device is in full run (SLEEP_DUR=0000), the interrupt will be effective about 128us, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched.

7.8 FIFO_INT

The device has integrated FIFO memory, capable of storing up to 32 frames, with each frame contains three 10 bits words, for acceleration data of x, y, and z axis. All of the 3 axes acceleration are sampled at same point in time line.

The FIFO can be configured as three modes, FIFO mode, STREAM mode, and BYPASS mode. FIFO mode.
In FIFO mode, the acceleration data of selected axes are stored in the buffer memory. If enabled, a watermark interrupt can be triggered when the buffer filled up to the defined level. The buffer will continuously be filled until the fill level reaches to 32 . When the buffer is full, data collection stops, and the new data will be ignored. Also, FIFO_FULL interrupt will be triggered when enabled. STREAM mode
In STREAM mode, the acceleration data of selected axes will be stored into the buffer until the buffer is full. The buffer's depth is 31 now. When the buffer is full, data collection continues, and the oldest data is discarded. If enabled, a watermark interrupt will be triggered when the fill level reached to the defined level. Also, when buffer is full, FIFO_FULL interrupt will be triggered if enabled. If any old data is discarded, the FIFO_OR ($0 \times 0 \mathrm{E}<7>$) will be set to be logic 1.
BYPASS mode
In BYPASS mode, only the current acceleration data of selected axes can be read out from the FIFO. The FIFO acts like the STREAM mode with a depth of 1. Compare to reading directly from data register, this mode has the advantage of ensuring the package of xyz data are from same point of time line. The data registers are updated sequentially and have chance for the xyz data sampled in different time. Also, if any old data is discarded, the FIFO_OR will be set to be logic 1 , similar as that in stream mode.
The FIFO mode can be configured by setting FIFO_MODE ($0 \times 3 \mathrm{E}<7: 6>$).

FIFO_MODE	Mode
00	BYPASS
01	FIFO
10	STREAM
11	FIFO

User can select the acceleration data of which axes to be stored in the FIFO. This configuration can be done by setting FIFO_CH ($0 \times 3 \mathrm{E}<1: 0>$), where ' 00 b ' for x -, y -, and z -axis, ' 01 b ' for x -axis only, ' 10 b ' for y -axis only, ' 11 b ' for z-axis only.
If all the 3 axes data are selected, the format of data read from $0 \times 3 \mathrm{~F}$ is as follows

XLSB	XMSB	YLSB	YMSB	ZLSB	ZMSB

These comprise one frame
If only one axis is enabled, the format of data read from 0x3F is as follows
YLSB \quad YMSB
These comprise one frame
If the frame is not read completely, the remaining parts of the frame will be discarded.
If the FIFO is read beyond the FIFO fill level, all zeroes will be read out.

FIFO_FRAME_COUNTER ($0 \times 0 \mathrm{E}<6: 0>$) reflects the current fill level of the buffer. If additional data frames are written into the buffer when the FIFO is full (in Stream mode or Bypass mode), then, FIFO_OR ($0 x 0 \mathrm{E}<7>$) is set to 1. This FIFO_OR can be considered as flag of discarding old data.

When a write access to one of the FIFO configuration registers (0x3E) or (0x31) occurs, the FIFO buffer will be cleared, the FIFO fill level indication register FIFO_FRAME_COUNTER ($0 \times 0 \mathrm{E}<6: 0>$) will be cleared, and the FIFO_OR ($0 \times 0 \mathrm{E}<7>$) will be cleared.

As mentioned, FIFO controller contains two interrupts, FIFO_FULL interrupt, and watermark interrupt. These two interrupts are functional in all the FIFO operating modes.
The watermark interrupt is triggered when the fill level of buffer reached to the level that is defined by register FIFO_WM_TRIGGER $(0 \times 31<5: 0>)$, if the interrupt is enabled by setting INT_FWM_EN $(0 \times 17<6>)$ to logic 1 and INT1_FWM $(0 \times 1 \mathrm{~A}<1>)$ or INT2_FWM $(0 \times 1 \mathrm{~A}<6>)$ is set.
The FIFO_FULL interrupt is triggered when the buffer has been fully filled. In FIFO mode, the fill level is 32, and in STREAM mode the fill level is 31, in BYPASS mode the fill level is 1. To enable the FIFO_FULL interrupt, INT_FFULL $(0 \times 17<5>)$ should be set to 1, and INT1_FFULL $(0 \times 1 A<2>)$ or INT2_FFULL $(0 \times 1 A<7>)$ should be set to 1 .
The status of watermark interrupt and fifo full interrupt can be read through INT_STAT (0x0A).
After soft-reset, the watermark interrupt and FIFO full interrupt are disabled.
For the FIFO to recollect the data, user should reconfigure the register FIFO_MODE. (consult with app team)

7.9 Interrupt configuration

The device has the above 8 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.
The interrupt status registers update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

The interrupt sequence is like the following
New data conversion, with or without filtering, judge the interrupt condition, new data written to data register, update interrupt status registers, trig associated interrupts, set mapped interrupt PINs, clear interrupts (depending on the interrupt mode), waiting for next data conversion.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT ($0 \times 21<0>$).
In non-latched mode, the interrupt status bit and the mapped interrupt pin are cleared as soon as the associated conditions are no more valid, or read operation to the INT_STAT (0x09~0x0b). Exceptions to this are the new data, orientation, and flat interrupts, which are automatically reset after a fixed time.
In latched mode, the clearings of the interrupt status and selected pin are determined by INT_RD_CLR ($0 \times 21<7>$). If INT_RD_CLR=0, read operation to the INT_STAT will clear the interrupt and the selected pin. If INT_RD_CLR=1, any read operation to the device will clear the interrupt and the selected pin.
If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT_MAP ($0 \times 19 \sim 0 \times 1 B$).
The electrical interrupt pins can be set INT_PIN_CONF ($0 \times 20<3: 0>$). The active logic level can be set to 1 or 0 , and the interrupt pin can be set to open-drain or push-pull.

If the interrupt mode is configured as latched mode, the interrupt can also be cleared by I2C reading any of the interrupt status register ($0 \times 09 \sim 0 x 0 c$). (should confirm with application team, check $0 \times 21<7>$)

$8 I^{2} \mathrm{C}$ COMMUNICATION PROTOCOL

$8.1 \quad I^{2} C$ Timings

Below table and graph describe the $I^{2} \mathrm{C}$ communication protocol times
Table 9. I2C Timings

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
SCL Clock	$\mathrm{f}_{\text {scl }}$		0		400	kHz
SCL Low Period	$\mathrm{t}_{\text {low }}$		1			$\mu \mathrm{~S}$
SCL High Period	$\mathrm{t}_{\text {high }}$		1			$\mu \mathrm{~S}$
SDA Setup Time	$\mathrm{t}_{\text {sudat }}$		0.1			$\mu \mathrm{~S}$
SDA Hold Time	$\mathrm{t}_{\text {hddat }}$		0		0.9	$\mu \mathrm{~S}$
Start Hold Time	$\mathrm{t}_{\text {hdsta }}$		0.6			$\mu \mathrm{~S}$
Start Setup Time	$\mathrm{t}_{\text {susta }}$		0.6			
Stop Setup Time	$\mathrm{t}_{\text {susto }}$		0.6			$\mu \mathrm{~S}$
New Transmission Time	$\mathrm{t}_{\text {buf }}$		1.3			$\mu \mathrm{~S}$
Rise Time	t_{r}					$\mu \mathrm{S}$
Fall Time	t_{f}					$\mu \mathrm{S}$

Figure 12. $I^{2} C$ Timing Diagram

$8.2 \quad I^{2} \mathrm{C}$ R/W Operation

8.2.1 Abbreviation

Table 10. Abbreviation

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.2.2
 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once $I^{2} C$ transmission starts, the bus is considered busy.
STOP: STOP condition is a low to high transition on SDA line while SCL is held high.
ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.
NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.2.3 $\quad I^{2} C$ Write

$1^{2} \mathrm{C}$ write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit ($R / W=0$). The slave sends an acknowledge bit ($\mathrm{ACK}=0$) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. I2C Write

8.2.4 $\quad I^{2} C$ Read

$I^{2} \mathrm{C}$ write sequence consists of a one-byte $I^{2} \mathrm{C}$ write phase followed by the $I^{2} \mathrm{C}$ read phase. A start condition must be generated between two phase. The $I^{2} C$ write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit ($\mathrm{R} / \mathrm{W}=1$). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit $(\mathrm{ACK}=0)$ to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.
The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current $I^{2} \mathrm{C}$ write command.

Table 12. I2C Read

9 REGISTERS

9.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

Table 13. Register Map

Addr	Name	Description	B7	B6	B5	B4	B3	B2	B1	B0	Defa ult	$\begin{aligned} & \hline \mathbf{R /} \\ & \mathbf{W} \end{aligned}$
0×00	CHIP_ID	CHIP ID	For product version								0xB0	RW
0x01	DXL	$\begin{aligned} & \text { LSB of X } \\ & \text { data } \end{aligned}$	DX<1:0>							$\begin{aligned} & \text { NEW } \\ & \text { DATA } \\ & \mathrm{X} \\ & \hline \end{aligned}$	0x00	R

9.2 Register Definition

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
Device ID									

This register is used to identify the device
Register 0x01~0x02 (DXL, DXM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DX<1:0>						NEWDAT	R	0x00	
DX<9:2>									
DX:									
NEWDATA_X:									

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DY<1:0>							NEWDAT A_Y	R	0x00
DY<9:2>								R	0x00

DY: $\quad 10$ bits acceleration data of y-channel. This data is in two's complement.
NEWDATA_Y: 1, acceleration data of y-channel has been updated since last reading
0 , acceleration data of y-channel has not been updated since last reading
Register 0x05 ~ 0x06 (DZL, DZM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DZ $<1: 0>$						NEWDAT A Z	R	0x00	
DZ<9:2>				R	0×00				

DZ:	10bits acceleration data of z-channel. This data is in two's complement.
NEWDATA_Z:	1, acceleration data of z-channel has been updated since last reading 0, acceleration data of z-channel has not been updated since last reading
	,

Register 0x07 ~ 0x08 (ID)									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CNT_LSB	LSB							R	0x00
	STEP CNT MSB							R	0x00

STEP_CNT_LSB The least significant 8 bits of step count
STEP_CNT_LSB: The most significant 8 bits of step count
Register 0x0a (INT_STAT0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FOB_INT	ORIENT_I	S_TAP_1	D_TAP_I	STEP_IN	STEP_Q	STEP_UN		R	0x00
	NT	NT	NT	T	UIT_INT	SIMILAR			

FOB_INT: $\quad 1$, front-back interrupt active

ORIENT_INT: \quad 1, orient interrupt active
S_TAP_INT: $\quad 1$, orient interrupt inactive
D $\quad 0$, single tap interrupt inactive
D_TAP_INT: $\quad 1$, double tap interrupt active
STEP_INT: $\quad 1$, step valid interrupt is active
STEP OUIT INT. 0 , step valid interrupt is inactive
STEP_QUIT_INT: 1 , step quit interrupt is active
0 , step quit interrupt is inactive
STEP_UNSIMILAR:
1 , step unsimilar interrupt is active
0 , step unsimilar interrupt is inactive
Register 0x0b (INT_STAT1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	FIFO_WM INT	FIFO_FU LL_INT	DATA_IIN T T	LOW_INT	HIGH-INT			R	0x00

This register indicates interrupt status related to data ready, FIFO watermark, and FIFO full.
FIFO_WM_INT: 1, FIFO watermark interrupt active
0, FIFO watermark interrupt inactive
FIFO_FULL_INT: 1, FIFO full interrupt active
DATA INT. $\quad 0$, FIFO full interrupt inactive
1, data ready interrupt active
0 , data ready interrupt inactive

LOW_INT:	1, low-g interrupt active
HIGH_INT:	0, low-g interrupt inactive
	1, high-g interrupt active
	0, high-g interrupt inactive

Register 0x0c (INT_STAT2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
TAP_SIG	TAP_FIR	TAP_FIR	TAP_FIR	HIGH_SI	HIGH_FI	HIGH_FI	HIGH_FI	R	Ox00
N	ST_Z	ST_Y	ST_	GN	RST_ \bar{Z}	RST_Y	RST_		

TAP_SIGN:	1, sign of tap triggering is negative
0 , sign of tap triggering signal is positive	

TAP_FIRST_Z: $\quad 1$, tap interrupt is triggered by Z axis

TAP FIRST Y : $\quad 0$, tap interrupt is not triggered by Z axis
0 , tap interrupt is not triggered by Y axis
TAP_FIRST_X: 1 , tap interrupt is triggered by X axis
HIGH_SIGN: $\quad 1$, sign of high-g triggering signal is negative
0 , sign of high-g triggering signal is positive
HIGH_FIRST_Z: $\quad 1$, high-g interrupt is triggered by Z axis
0 , high- g interrupt is not triggered by Z axis
HIGH_FIRST_Y: 1, high-g interrupt is triggered by Y axis
0 , high-g interrupt is not triggered by Y axis
1 , high- g interrupt is triggered by X axis
0 , high-g interrupt is not triggered by X axis
Register 0x0d (INT_STAT3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
STEP_CN T_OVFL		FOB<1:0>	ORIENT<2:0>	Refault				

FOB $<1: 0>:$	00, device is in unknown orientation
	01, device is in front orientation
	10, device is in back orientation
ORIENT $<2: 0>:$	11, reserved
	00, device is in unknown orientation
	001, device is in left orientation
	010, device is in right orientation
	011, reserved
	100, reserved
	101, device is in down orientation
	11, device is in up orientation
	111, reserved

110, device is in up orientation
111, reserved

Register 0x0e (FIFO_STATE)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
FIFO_OR	FIFO_FRAME_COUNT<6:0>		Default					

FIFO_OR: 1, FIFO over run occurred
0 , FIFO over run not occurred
FIFO_FRAME_COUNT<6:0>:
Fill level of FIFO buffer. An empty FIFO corresponds to 0×00. The frame counter can be cleared by reading out all of the frames, or by writing register 0x3e (FIFO_CFG1) or 0x31.
Register 0x0f (RANGE)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				RANGE $<3: 0>$	R/W	Default	

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

RANGE $<3: 0>$	Acceleration range	Resolution
0001	2 g	$3.9 \mathrm{mg} / \mathrm{LSB}$
0010	4 g	$7.8 \mathrm{mg} / \mathrm{LSB}$
0100	8 g	$15.6 \mathrm{mg} / \mathrm{LSB}$
Others	Reserved	$0.98 \mathrm{mg} / \mathrm{LSB}$

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
		ODRH	BW $<4: 0>$		RW	0x00			

ODRH: \quad 1, higher output data rate, ODR $=4^{*}$ F_BW
BW $<4: 0>$: bandwidth setting, as following

BW $<4: 0>$	F_BW (Bandwidth)	ODR $(0 \times 10<5>=0)$	ODR $(0 \times 10<5>=1)$
$x \times 000$	3.9 Hz	7.8 Hz	15.6 Hz
$x \times 001$	7.8 Hz	15.6 Hz	31.2 Hz
$x x 010$	15.6 Hz	31.2 Hz	62.5 Hz
$x \times 011$	31.2 Hz	62.5 Hz	125 Hz
$x \times 100$	62.5 Hz	125 Hz	250 Hz
$x \times 101$	125 Hz	250 Hz	500 Hz
$x \times 110$	250 Hz	500 Hz	1000 Hz
$x \times 111$	500 Hz	1000 Hz	2000 Hz

Even if unfiltered data is used, the ODR is still set by BW value.

Register 0x12 (STEP_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_ST ART		STEP_SAMPLE_COUNT<4:0>		RW	0x0C				

STEP_START: start step counter, this bit should be set when using step counter
STEP_SAMPLE_COUNT<4:0>:
sample count setting for dynamic threshold calculation. The actual value is STEP_SAMPLE_COUNT<4:0>*4, default is $0 x C, 48$ sample count

Register 0x13 (STEP_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
$\begin{aligned} & \text { STEP_CL } \\ & \text { R } \end{aligned}$	STEP_PRECISION<6:0>							RW	0x00

STEP_CLR: clear step count in register 0x7 and 0x8
STEP_PRECISION<6:0>:
threshold for acceleration change of two successive sample which is used to update sample_new register in step counter, the actual g value is TEP_PRECISION $<6: 0>* 3.9 \mathrm{mg}$

Register 0x14 (STEP_CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
STEP_TIME_LOW					Default			

STEP_TIME_LOW: the short time window for a valid step, the actual time is STEP_TIME_LOW<7:0>*ODR
Register 0x15 (STEP_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
STEP_TIME_UP	Default							

STEP_TIME_UP: time window for quitting step counter, the actual time is STEP_TIME_UP<7:0>***ODR

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FOB_EN	$\begin{aligned} & \hline \text { ORIENT_ } \\ & \text { EN } \end{aligned}$	$\begin{aligned} & \text { S_TAP_E } \\ & \mathrm{N}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{N}} \text { TAP_E } \end{aligned}$	STEP_EN	$\begin{aligned} & \text { STEP_Q } \\ & \text { UIT_EN } \end{aligned}$	$\begin{aligned} & \text { STEP_UN } \\ & \text { SIMILARR- } \\ & \text { EN } \end{aligned}$		RW	0x00

QST Corporation

FOB_EN:	1, enable front-and-back orientation interrupt
	0 , disable front-and-back orientation interrupt
ORIENT_EN:	1, enable 4D orientation interrupt
	0 , disable 4D orientation interrupt
S_TAP_EN:	1, enable single tap interrupt
	0 , disable single tap interrupt
D_TAP_EN:	1, enable double tap interrupt
	0 , disable double tap interrupt
STEP_EN:	1, enable step valid interrupt
	0 , disable step valid interrupt
STEP_QUIT_EN:	1, enable step quit interrupt
	0 , disable step quit interrupt
STEP_UNSIMILAR_EN:	
	1, enable step unsimilar interrupt
	0 , disable step unsimilar interrupt

Register 0x17 (INT_EN1)									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	$\begin{aligned} & \text { INT_FWM } \\ & \text { EN } \end{aligned}$	INT_FFU LL EN	DATA_EN	LOW_EN	$\begin{aligned} & \text { HIGH_EN } \\ & Z \end{aligned}$	$\begin{aligned} & \text { HIGH_EN } \\ & \text { _Y } \end{aligned}$	$\begin{aligned} & \text { HIGH_EN } \\ & \text { X } \end{aligned}$	RW	0x00
INT_FWM_EN:		1, enable FIFO watermark interrupt							
		0 , disable FIFO	watermark	errupt					
INT_FFULL_EN:		1, enable FIFO full interrupt							
		0 , disable FIFO	full interrupt						
DATA_EN:		1, enable data ready interrupt							
		0 , disable data ready interrupt							
LOW_EN:		1, enable low-g	interrupt						
		0 , disable low-g interrupt							
		1 , enable high-g interrupt on Z axis							
HIGH_EN_Z:		0 , disable high	interrupt on	Z axis					
HIGH_EN_Y:		1, enable high-g interrupt on Y axis							
		0 , disable high-g interrupt on Y axis							
HIGH_EN_X:		1 , enable high-g interrupt on X axis							
		0 , disable high-g interrupt on X axis							

Register 0x18 (INT SRC)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT_SRC _STEP	INT_SRC	INT_SRC					RW	DATA
	TAP								

INT_SRC_STEP: 1, select unfiltered data for step counter
0 , select filtered data for step counter
INT_SRC_DATA: 1, select unfiltered data for new data interrupt and FIFO
0 , select filtered data for new data interrupt and FIFO
INT_SRC_TAP: 1, select unfiltered data for TAP interrupt
0 , select filtered data for TAP interrupt

Register 0x1a (INT_MAP1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT1_FW	INT1_FF	INT1_DA	INT1_LO	INT1_HIG			RW	0x00
	M	ULL	TA	W	Hs				

Register 0x1c (INT MAP3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	$\begin{aligned} & \text { INT2_FW } \\ & \mathrm{M} \end{aligned}$	INT2_FUL	$\begin{aligned} & \text { INT2_DA } \\ & \text { TA } \end{aligned}$	$\begin{aligned} & \hline \text { INT1_ST } \\ & \text { EP } \end{aligned}$	$\begin{aligned} & \text { INT2_LO } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { INT2_HIG } \\ & \text { H } \end{aligned}$,	RW	0x00
INT2_FWM:		1, map FIFO watermark interrupt to INT2 pin							
INT2_FULL:		1, map FIFO full interrupt to INT2 pin 0 , not map FIFO full interrupt to INT2 pin							
INT2_DATA:		0 , not map FIFO full interrupt to INT2 pin 1, map data ready interrupt to INT2 pin 0 , not map data ready interrupt to INT2 pin							
INT2_LOW:		1, map low-g interrupt to INT2 pin							
INT2_HIGH:		1, map high-g interrupt to INT2 pin							

t
Register 0x1e (VALLEY_B)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
VALLEY_B<5:0>								

VALLEY_B<5:0>: valley value of one axis which is used for step valley match
Register 0x1f (PEAK_B)

Bit7 1 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
PEAK_B<5:0>		STEP_MISMATCH_B< $1: 0>$	RW	Default			

PEAK_B<5:0>: peak value of one axis which is used for step peak match STEP_MISMATCH_B<1:0>:
precision for step peak and valley match
00 , match VALLEY_B<5:1> and PEAK_B<5:1>
01, match VALLEY_B<5:2> and PEAK_B<5:2>
10, match VALLEY $\quad \mathrm{B}<5: 3>$ and PEAK_B<5:3>
11, match VALLEY_B<5:4> and PEAK_B<5:4>
Register 0x20 (INTPIN_CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
			INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	Ox05	
INT2_OD:	1, open-drain for INT2 pin								
INT2_LVL:	 0, push-pull for INT2 pin 1, logic high as active level for INT2 pin 0, logic low as active level for INT2 pin								

INT1_OD:	1, open-drain for INT1 pin INT1_LVL:\quad0, push-pull for INT1 pin \quad 1, logic high as active level for INT1 pin
	0, logic low as active level for INT1 pin

Register 0x21 (INT_CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT_RD__	SHADOW	INT_PUL					LATCH_I	RW	0x00
CLR	DIS	SE					NT		

INT_RD_CLR: 1, clear all the interrupts in latched-mode, when any read operation to this device
0 , clear all the interrupts, only when read the register INT_STAT (0x0A~0x0B), no matter the interrupts in latched-mode, or in non-latched-mode
SHADOW_DIS: 1, disable the shadowing function for the acceleration data
0 , enable the shadowing function for the acceleration data. When shadowing is enabled, the MSB of the acceleration data is locked, when corresponding LSB of the data is reading. This can ensure the integrity of the acceleration data during the reading. The MSB will be unlocked when the MSB is read.
INT_PULSE: 1, data ready interrupt is kept until next conversion starts, in power cycling
LATCH INT: $\quad 0$, pulse of data ready interrupt is fixed to be 128us
LATCH_INT: $\quad 1$, interrupt is in latch mode
0 , interrupt is in non-latch mode
Register 0×22 (LOW_HIGH_G_0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
LOW_DUR								

LOW_DUR: low-g interrupt triggered delay, the actual time is (LOW_DUR $<7: 0>+1$)*2ms; the default delay time is 20 ms
Register 0×23 (LOW HIGH G 1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
LOW_TH	Default							

LOW_TH: low-g interrupt threshold, the actual g value is (LOW_TH $\mathrm{C}<7: 0>)^{*} 7.8 \mathrm{mg}$; the default value is 375 mg
Register 0x24 (LOW_HIGH_G_2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
HIGH_HYST<1:0>				LOW_MO DE	LOW_HYST<1:0>	RW	Default	

HIGH_HYST<1:0>: hysteresis of high-g interrupt , the actual g value is (HIGH_HYST<1:0>)*125mg(2g range), (HIGH_HYST<1:0>)*250mg (4 g range),(HIGH_HYST<1:0>)*500mg(8g range)
LOW_MODE: low-g interrupt mode, 0 : single-axis mode, 1 : sum mode
LOW_HYST<1:0>: hysteresis of low-g interrupt, the actual g value is (LOW_HYST<1:0>)*125mg, independent of the selected g range
Register 0x25 (LOW HIGH G 3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
HIGH_DUR		Default						

HIGH_DUR: high-g interrupt triggered delay, the actual time is (HIGH_DUR<7:0>+1)*2ms; the default delay time is 32 ms
Register 0x26 (LOW_HIGH_G_4)

Register 0x27 (OS_CUST_X)

OS_CUST_Y: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9 mg in 2 g range, 7.8 mg in 4 g range, 15.6 mg in 8 g range

Register 0x29 (OS_CUST_Z)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default
OS_CUSTTZ
OS_CUST_Z:

Register 0x2a (TAP CONFO)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
TAP_QUI	TAP_SH				TAP_DUR<2:0>		RW	0x04	
ET	OCK								

TAP_QUIET: tap quiet time, $1: 30 \mathrm{~ms}, 0: 20 \mathrm{~ms}$
TAP_SHOCK: tap shock time, 1:50ms, $0: 75 \mathrm{~ms}$
QST Corporation
29

TAP_DUR<2:0>: the time window of the second tap event for double tap

TAP_DUR<2:0>	Duration of TAP_DUR
000	50 ms
001	100 ms
010	150 ms
011	200 ms
100	250 ms
101	375 ms
110	500 ms
111	700 ms

Register 0x2b (TAP_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	TAP_TH $<4: 0>$	R/W	Default				

Register 0x2c (4D6D_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
UD_Z_TH	Default							

UD_Z_TH: Up/down z axis threshold, the actual g value is UD_Z_TH<7:0>* $3.91 \mathrm{mg}+0.1 \mathrm{~g}$, independent of the selected g range
Register 0x2d (4D6D_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
UD_X_TH		Default						

UD_X_TH: Up/down x axis threshold, the actual g value is UD_X_TH<7:0>* 3.91 mg , independent of the selected g range, the default value is 0.64 g , corresponding to 40 degree

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
RL_Z_TH	Default							

RL_Z_TH: Right/left z axis threshold, the actual g value is RL_Z_TH<7:0>*3.91mg+0.1g, independent of the selected g range
Register 0x2f (4D6D_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
RL_Y_TH								
RL_Y_TH:								

Register 0x30 (4D6D CONF4)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
ORIENT_- DB_DIS	FB_Z_TH<6:0>		Default					

ORIENT_DB_DIS: 1: disable orient denounce time
0 : enable orient denounce time
FB_Z_TH<6:0>: Front/back z axis threshold, the actual g value is FB_Z_TH<7:0>*3.91mg+0.1g, independent of the selected g range
Register 0x31 (FIFO WTMK)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
		FIFO_WTMK_LVL<5:0>			RW	0x00			

FIFO_WTMK_LVL<5:0>:
defines FIFO water mark level. Interrupt will be generated, when the number of entries in the FIFO exceeds FIFO_WTMK_LVL<5:0>. When the value of this register is changed, the FIFO_FRAME_COUNTER is reset to 0.

Register 0x32 (ST_CONF)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 ${ }^{\text {a }}$ Bit0	R/W	Default
SELFTES T_BIT			SELFTES T_AMP/E n_Peak_V alley	SingleEn_ Step	SELFTES T_SIGN	SELFTEST_AXIS<1:0>	RW	0x00

SELFTEST_BIT: 1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the value settling.
0 , normal
SELFTEST_AMP/En_Peak_Valley:
This bit is multiple used by SELFTEST_AMP and En_Peak_Valley,
When used as SELFTEST_AMP:
1, set high amplitude for self-test force
0 , set low amplitude for self-test force
When used as En_Peak_Valley:
1, enable Peak and Valley match in step counter
0, disable Peak and Valley match in step counter
SingleEn_Step: 1, enable single axis mode in step counter
0 , disable single axis mode in step counter
SELFTEST_SIGN: 1, set self-test excitation positive
QST Corporation
30

SELFTEST_AXIS<1:0>:
These two bits are used to select axis for selftest or step counter
When SELFTEST_BIT ($0 \times 32<7>$) is enabled:
00, x axis
01, y axis
$10, z$ axis
$11, z$ axis
When STEP_EN $(0 \times 16<3>)$ is enabled,
$00, x$ axis
01, y axis
$10, z$ axis
$11, z$ axis
When STEP_EN $(0 \times 16<3>)$ and SingleEn_Step $(0 \times 32<3>)$ is enabled,
00, x axis
01, y axis
$10, z$ axis
$11, z$ axis

Register 0x34 (VALLEY_A)
Register 0x34 (VALLEY_A)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
VALLEY_A<5:0>	valley value of one axis which is used for step valley match		Default					

Register 0x1f (PEAK_A)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
PEAK_A<5:0>		STEP_MISMATCH_A<	RW	Default				

PEAK_A<5:0>: peak value of one axis which is used for step peak match STEP_MISMATCH_A<1:0>:
precision for step peak and valley match
00, match VALLEY $A<5: 1>$ and PEAK_A $<5: 1>$
01, match VALLEY $A<5: 2>$ and PEAK_A $<5: 2>$
10, match VALLEY_A $<5: 3>$ and PEAK_A $<5: 3>$
11, match VALLEY_A $<5: 4>$ and PEAK_A $<5: 4>$
Register 0x33 (NVM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
UNLOCK				NVM_LO	NVM_RD	NVM_PR			RW
3F			AD	Y	OG				

UNLOCK_3F: 1, unlock the burst-reading of FIFO. The burst-reading can access registers behind 0x3F. This option is reserved for internal test.
0 , lock the burst-reading of FIFO. The register address will be locked at $0 \times 3 \mathrm{~F}$, for normal use.
NVM_LOAD:
1, trigger loading register from NVM
0 , not trigger loading register form NVM
This bit is cleared when NVM loading is done
NVM_RDY: $\quad 1$, NVM is ready, loading or programing NVM is done
0 , NVM is not ready, loading or programming NVM is in progress.
NVM_RDY is read-only to customer.
NVM_PROG: 1, trigger programing NVM
0 , not trigger programming NVM
This bit is cleared when NVM programming is done
Register 0×36(SR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SOFT_RESET								RW	0x00
SOF	T:	36, r	the	$\begin{aligned} & \text { nmin } \\ & \text { eareo } \end{aligned}$	en to set or	er) rogra			

Register 0x37 (OFFSET_XY)

Bit7 \quad Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
OFFSET_X<10:8>	GAIN_Z<9:8>	OFFSET_Y<10:8>	Default				

OFFSET_X<10:8>: offset value of x-channel. This data is the trimming data for x channel in FT phase, together with OFFSET_X<7:0> in 0x38. GAIN_Z<9:8>: sensitivity trimming bits for z channel, together with GAIN_Z<7:0> in $0 \times 3 D$ (total 10 bits).
OFFSET_Y<10:8>: offset value of y-channel. This data is the trimming data for y channel in FT phase, together with OFFSET_Y<7:0> in 0x39.
Register 0x38 (OFFSET X)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
OFFSET_ $X<7: 0>$			Default					
OFFSET $X<7: 0>$		RW	NVM					

OFFSET_X<7:0>: offset value of x-channel. This data is the trimming data for x channel in FT phase, together with OFFSET_X<10:8> in $0 \times 37<7: 5>$. The trimming LSB is 4 mg , the full trimming range in digital domain is +-4 g User can perform read-modify-write access, to change the register value. However, when device is re-power-on, or soft-reset, this value will be updated to default again.
Register 0x39 (OFFSET_Y)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
OFFSET_Y<7:0>								

OFFSET_Y<7:0>: \quad offset value of y-channel. This data is the trimming data for y channel in FT phase, together with OFFSET_Y<10:8> in $0 \times 37<2: 0>$. The trimming LSB is 4 mg , the full trimming range in digital domain is +-4 g User can perform read-modify-write access, to change the register value. However, when device is re-power-on, or soft-reset, this value will be updated to default again.

Register 0x3a (OFFSET_Z)

Bit7 ${ }^{\text {a }}$ (${ }^{\text {ait6 }}$	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
OFFSET_Z<7:0>									
OFFSET_Z<7:0>:	set v he trim ser can is valu	chan B is m rea upda	data full trí -write efault	range		$\begin{aligned} & \mathrm{nFTh} \\ & -8 \mathrm{~g} \\ & \text { ue. } \mathrm{H} \end{aligned}$	gethe when	FFSET is re-pow	$11: 8>\text { in } 0 \times 45<3: 0>\text {. }$ on, or soft-reset,

Register 0x3b (GAIN_X) not open to customer

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
GAIN_X								RW	NVM
GAIN_X:		sensitivit Gain_to Gain ran	$\begin{aligned} & \text { ing bit } \\ & 56+G \\ & m 1 \text { to } \end{aligned}$	$\begin{aligned} & \text { chann } \\ & \text { / } 256 \\ & \text { vorst g } \end{aligned}$		$6 \sim=0$			

Register 0x3c (GAIN_Y) not open to customer

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
GAIN_Y							

Register 0x3d (GAIN_Z) not open to customer

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
GAIN_Z<7:0>								

GAIN_Z: sensitivity trimming bits for z channel, together with GAIN $Z<9: 8>$ in $0 \times 37<4: 3>$ (total 10 bits)
Gain_total $=(128+$ GAIN_Z $) / 256$
Gain rang is from 0.5 to 4.5 , the worst gain accuracy is $1 / 128 \sim=0.8 \%$
Register 0x3e (FIFO_CFG)

Bit7 \quad Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FIFO_MODE<1:0>					FIFO_CH<1:0>	RW	0×00	

FIFO_MODE<1:0>: FIFO_MODE defines FIFO mode of the device. Settings as following

FIFO_MODE $<1: 0>$	Mode
11	FIFO
10	STREAM
01	FIFO
00	BYPASS

FIFO_CH<1:0>: FIFO_CH defines which channel data be stored in FIFO buffer. Setting as following 11, only z axis data be stored in FIFO buffer 10, only y axis data be stored in FIFO buffer 01, only x axis data be stored in FIFO buffer 00, all axes data be stored in FIFO buffer

Register 0x3f (FIFO_DATA)

Ordering Number	Temperature Range	Package	Packaging
QMC6981－TR	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	LGA－12	Tape and Reel： 5 k pieces／reel

Caution

This part is sensitive to damage by electrostatic discharge．Use ESD precautionary procedures when touching，removing or inserting．

CAUTION：ESDS CAT．1B

FIND OUT MORE

For more information on QST＇s Accelerometer Sensors contact us at 86－21－50497300．
The application circuits herein constitute typical usage and interface of QST product．QST does not provide warranty or assume liability of customer－designed circuits derived from this description or depiction．

QST reserves the right to make changes to improve reliability，function or design．QST does not assume any liability arising out of the application or use of any product or circuit described herein；neither does it convey any license under its patent rights nor the rights of others．

ISO9001 ： 2008
China Patents 201510000399．8，201510000425．7，201310426346．3，201310426677．7，201310426729．0， 201210585811.3 and 201210553014.7 apply to the technology described．

QST
First Floor，Building No．2， Chengbei Road 235，Shanghai
Tel：86－21－69517300

Rev1．0，released Apr． 2015 QST Corporation

