

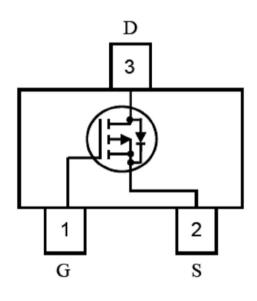
MEM2307XG

P-Channel MOSFET MEM2307XG

General Description

MEM2307XG Series P-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation, and low power dissipation in a very small outline surface mount package.

Features


I -30V/-4.1A

 $R_{DS(ON)} < 88m$ @ $V_{GS} = -10V$, $I_D = -4.1A$

 $R_{DS(ON)} < 108m$ @ $V_{GS} = -4.5V, I_D = -3A$

- I High Density Cell Design For Ultra Low On-Resistance
- I Subminiature surface mount package: SOT23

Pin Configuration

Typical Application

- I Power management
- I Load switch
- I Battery protection

Absolute Maximum Ratings

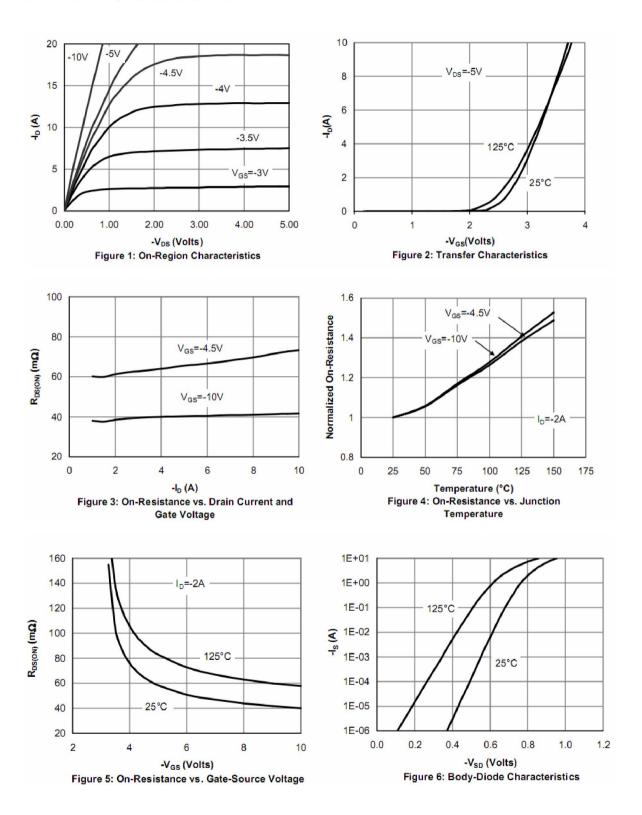
Parameter		Symbol	Ratings	Unit
Drain-Source Voltage		V_{DSS}	-30V	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain	T _A =25	I-	-4.1	A
Current	T _A =70	I _D	-3.5	
Pulsed Drain Current ^{1,2}		I _{DM}	-20	А
Total Power	T _A =25	Pd	1.4	W
Dissipation	T _A =70	Fu	1	VV
Operating Temperature Range		T_{Opr}	150	
Storage Temperature Range		T _{stg}	-55/150	

MEM2307XG

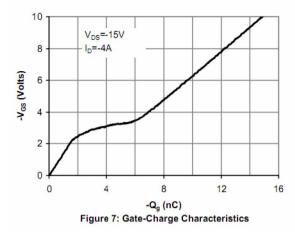
Thermal Characteristics

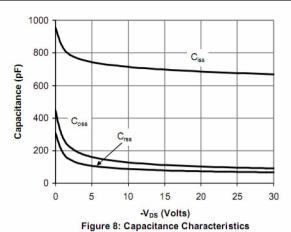
Parameter		Symbol	TYP.	MAX.	Unit
Thermal Resistance,	t 10s	D	65	90	W
Junction-to-Ambient	1 105	R _{JA}	05	90	/ / / /
Thermal Resistance,	Stoody State	R _{JA}	85	125	W
Junction-to-Ambient	Steady-State				
Thermal Resistance,	Stoody State	R _{JL}	43	60	W
Junction-to-Lead	Steady-State				

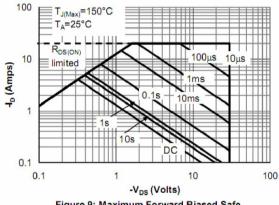
Electrical Characteristics


Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
	S	Static Characteristics		•		
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =-250uA	-30			V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = -250$ uA	-1	-1.3	-2	V
Cata Padu Laskaga	I _{GSS}	V _{DS} =0V , V _{GS} =20V			100	nA
Gate-Body Leakage		V _{DS} =0V , V _{GS} =-20V			-100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-24V V _{GS} =0V			-1000	nA
Static Drain-Source	R _{DS(ON)1}	V _{GS} =-10V,I _D =-4.1A			88	m
On-Resistance	R _{DS(ON)2}	V_{GS} =-4.5 V , I_D =-3 A			108	m
Forward Transconductance	g _{FS}	$V_{DS} = -5 \text{ V}, I_{D} = -4 \text{A}$	5.5	8.2		S
Maximum Body-Diode Continuous Current	ls				-2.2	Α
Source-drain (diode forward) voltage	V _{SD}	V _{GS} =0V,I _D =-1A		0.77	-1.0	V
	Dy	namic Characteristics				
Input Capacitance	Ciss	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		700	840	pF
Output Capacitance	Coss	VGS=0V, VDS=-15V, f=1MHz		120		
Reverse Transfer Capacitance	Crss	I— HVII IZ		75		
Gate resistance	Rg	VGS=0V, VDS=0V, f=1MHz		10	15	
	Sw	itching Characteristics				
Turn-On Delay Time	td(on)			8.6		
Rise Time	tr	VGS=-10V,VDS=-15V,		5		no
Turn-Off Delay Time	td(off)	RL=3.6 ,RGEN=6		28.2		ns
Fall-Time	tf			13.5		
Total Gate Charge	Qg	V _{DS} = -15 V,		14.3		
Gate-Source Charge	Qgs	$V_{GS} = -4.5 V$,		3.1		nc
Gate-Drain Charge	Qgd	$I_D = -4A$		3		

^{1.} Repetitive rating, pulse width limited by junction temperature.


^{2.} The static characteristics are obtained using 80 μs pulses, duty cycle 0.5% max.




Typical Performance Characteristics

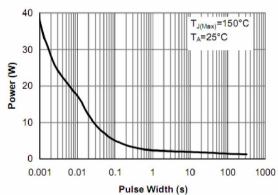
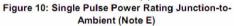



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

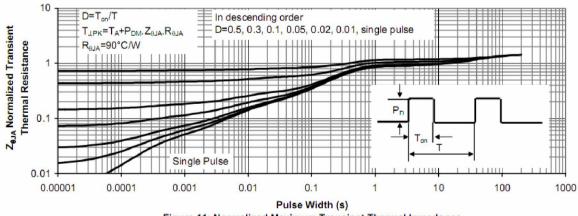
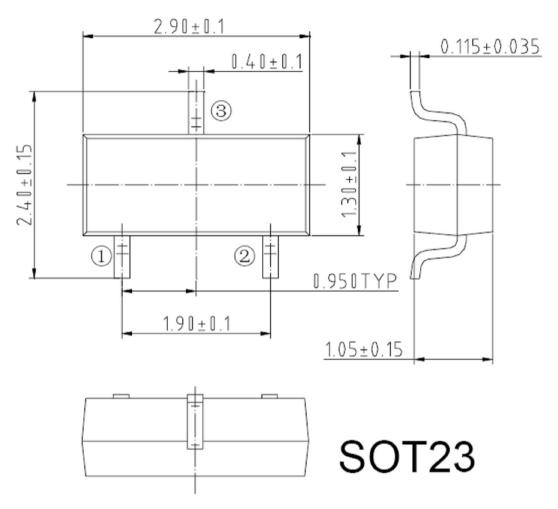



Figure 11: Normalized Maximum Transient Thermal Impedance

Package Information

更多产品请访问 : www.siitek.com.cn

- I The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- I Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- I The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

 CHER CONTROLLER** | CONTROLLER**

V06 <u>www.microne.com.cn</u> Page 6 of 6