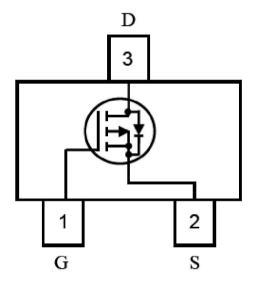


MEM2303

P-Channel MOSFET MEM2303M3


General Description

MEM2303M3G Series P-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation, and low power dissipation in a very small outline surface mount package.

Features

- -30V/-4.2A
 - $\begin{aligned} R_{DS(ON)} = 55m\Omega @ V_{GS} = -10V, I_D = -4.2A \\ R_{DS(ON)} = 62m\Omega @ V_{GS} = -4.5V, I_D = -4A \\ R_{DS(ON)} = 72m\Omega @ V_{GS} = -2.5V, I_D = -2.5A \end{aligned}$
- High Density Cell Design For Ultra Low On-Resistance
- Subminiature surface mount package:SOT23-3L

Pin Configuration

Typical Application

- Power management
- Load switch
- Battery protection

Absolute Maximum Ratings

Parameter		Symbol	ymbol Ratings	
Drain-Source Voltage		V _{DSS}	-30V	V
Gate-Source Voltage		V _{GSS}	±12	V
Drain	T _A =25℃		-4.2	A
Current	T _A =70℃	- I _D -	-3.5	
Pulsed Drain Current ^{1,2}		I _{DM}	-30	А
Total Power	T _A =25℃	Pd -	1.4	W
Dissipation	T _A =70℃	ru -	1	vv
Operating Temperature Range		T _{Opr}	150	Ŷ
Storage Temperature Range		T _{stg}	-65/150	

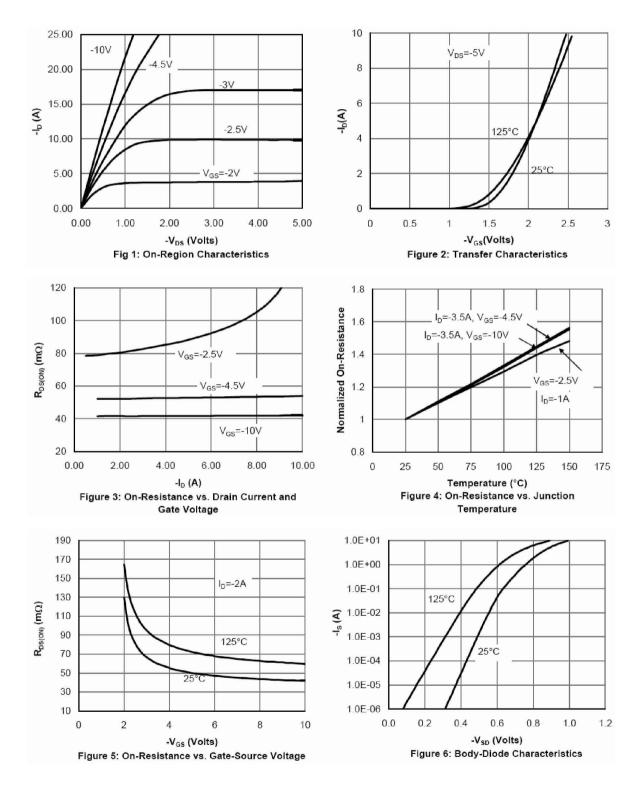
Thermal Characteristics

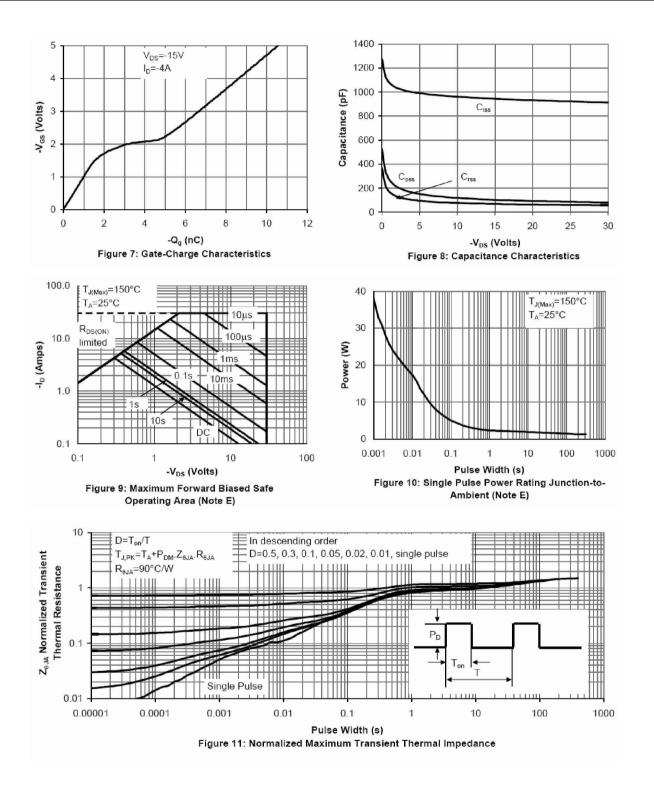
Parameter		Symbol	TYP.	MAX.	Unit
Thermal Resistance,	t≤10s	RθJA	65	90	°C /W
Junction-to-Ambient	12105	ROJA	05	90	CIVV
Thermal Resistance,	Steady-State	RθJA	85	125	°C /W
Junction-to-Ambient	Sleauy-Slale				
Thermal Resistance,	Stoody State	RθJL	42	60	°C /W
Junction-to-Lead	Steady-State		43		

Electrical Characteristics

MEM2303M3G

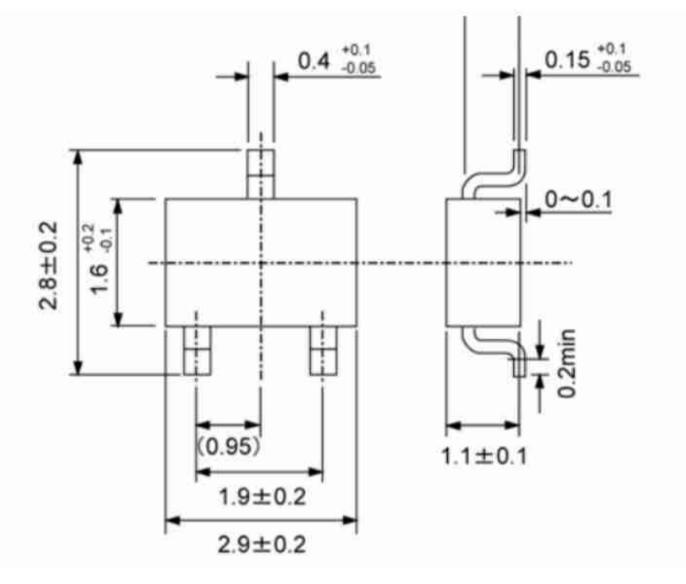
Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
	S	tatic Characteristics				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250uA	-30	-35		V
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D =-250uA	-0.7	-1.0	-1.3	V
Gate-Body Leakage	1	V_{DS} =0V, V_{GS} =12V		3	100	nA
Gale-Dody Leakage	I _{GSS}	V_{DS} =0V, V_{GS} =-12V		-3	-100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-24V V_{GS} =0V		-3.5	-1000	nA
	R _{DS(ON)1}	V_{GS} =-10V,I _D =-4.2A		55	58	mΩ
Static Drain-Source On-Resistance	R _{DS(ON)2}	V_{GS} =-4.5V,I _D =-4A		62	65	mΩ
	R _{DS(ON)3}	V _{GS} =-2.5V,I _D =-2.5A		72	90	mΩ
Forward Transconductance	g fs	V_{DS} = -5 V, I _D = -2.8 A	7	11		S
Maximum Body-Diode Continuous Current	ls				-2.2	А
Source-drain(diode forward) voltage	V_{SD}	V _{GS} =0V,I _D =-1A		-0.8	-1.0	V
	Dy	namic Characteristics				
Input Capacitance	Ciss	VGS=0V, VDS=-15V,		954		
Output Capacitance	Coss	f=1MHz		115		pF
Reverse Transfer Capacitance	Crss	I- IIVII 12		77		
Gate resistance	Rg	VGS=0V, VDS=0V, f=1MHz		6		Ω
	Swi	itching Characteristics				
Turn-On Delay Time	td(on)			6.5		
Rise Time	Rise Time tr VGS=-10			3.5		
Turn-Off Delay Time	td(off)	d(off) RL=3.6Ω,RGEN=6Ω		38		ns
Fall-Time	tf			12		
Total Gate Charge	Qg	V _{DS} = -15 V,		9.5		
Gate-Source Charge	Qgs	V _{GS} = -4.5 V,		2		nc
Gate-Drain Charge	Qgd	I _D = -4A		3		


1. Pulse width limited by Max. junction temperature.


MEM2303

2、Pulse width <300us, duty cycle <0.5%.

Typical Performance Characteristics



Package Information

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

