





#### 20V,2A Step Down Converter

## DESCRIPTION

The LC2312 is a monolithic step-down DC to DC converter. The LC2312 works from a 4.75V to 20V input voltage range, and offers up to 2A of continuous output current in a compact SOIC 8 package.

The LC2312 operates in voltage mode. Lower quiescent current and wider operating inputvoltage range are implemented by Belling's high-voltage BiCMOS-based technology. Alternative PWM/PFM control technique significantly improves the efficiency for both light load and heavy load.

The LC2312 also integrates soft-start, over load protection and under voltage lockout protection etc., which minimized external components and converter size.

## FEATURES

- Built-in 90mΩ P-Channel MOSFET
- Wide 4.75~20V Input Voltage Range
- Adaptive PWM/PFM Operation Mode
- Up to 95% Efficiency
- Built-in Soft-Start Function
- Fault Protection (Auto Recovery Mode)
- <1µA Shutdown Current and 350µA Quiescent Current
- Low Temperature-Drift Coefficient of Bandgap Voltage
- Demo Board Available

## APPLICATIONS

- Power Source for Battery-Powered Equipments.
- Distribute DC to DC Power Supply
- Pre-Regulator for Linear Regulator



## TYPICAL APPLICATION

## ORDERING INFORMATION

#### LC2312 123

| Code | Description                   |
|------|-------------------------------|
| 4    | Temperature&Rohs:             |
|      | C:-40~85°C ,Pb Free Rohs Std. |
|      | Package type:                 |
| 2    | D8:SOP8                       |
| 2    | Packing type:                 |
| 3    | TR:Tape&Reel (Standard)       |

## **PIN CONFIGURATION**



## **PIN DESCRIPTION**

| Pin No. | Name | Function Description                                                                                                                                                                                                                                  |
|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | NC   | Not connected                                                                                                                                                                                                                                         |
| 2       | VIN  | Power supply input pin.                                                                                                                                                                                                                               |
| 3       | SW   | Switching node. PWM output connection to inductor.                                                                                                                                                                                                    |
| 4       | GND  | Ground                                                                                                                                                                                                                                                |
| 5       | FB   | Feedback pin. It is used to program the output voltage by adjusting the ratio of the external resistor divider from output to ground. A compensation capacitor paralleling with the upper resistor is recommended to improve system dynamic response. |
| 6       | LDO  | LDO output pin. A 0.1uF capacitor is recommended in order to filter the switching noise.                                                                                                                                                              |
| 7       | EN   | Chip enable pin. High level activates the chip. Connect the pin to Vin if not used, do not leave this pin floating.                                                                                                                                   |
| 8       | NC   | Not connected                                                                                                                                                                                                                                         |

## ABSOLUTE MAXIMUM RATING

| Supply voltage                       | –0.3V to 25V         |
|--------------------------------------|----------------------|
| Switch Node                          | – 0.3V to Vin + 0.3V |
| Chip Enabe                           | -0.3V to Vin+0.3V    |
| Feedback input                       | –0.3V to 6V          |
| LDO Output                           | –0.3V to 6V          |
| PROG Pin Current                     | 600µA                |
| Maximum Junction Temperature         | 125°C                |
| Operating Ambient Temperature Range  | –40℃ to 85℃          |
| Storage Temperature Range            | –40℃ to 150℃         |
| Lead Temperature (Soldering, 10 sec) | 260°C                |
| Thermal resistance :Θ <sub>IA</sub>  | 105°C/W              |

Note: Exceed these limits to damage to the device.

Note: Exposure to absolute maximum rating conditions may affect device reliability.

## RECOMMENDED OPERATING CONDITIONS

| ITEMS                 | MIN  | NOM | MAX | UNIT |
|-----------------------|------|-----|-----|------|
| Input Voltage Range   | 4.75 |     | 20  | V    |
| Operating Temperature | -25  |     | 85  | °C   |

Note: Measured on approximately 1" square of 1 oz copper. Note: The device is not guaranteed to function outside its operating rating

## **BLOCK DIGRAM**



# ELECTRICAL CHARACTERISTICS

| (Unless otherwise specified, VIN=12V, | , CLDO=0.1uF, Ta=25°C) |
|---------------------------------------|------------------------|
|---------------------------------------|------------------------|

| Symbols            | Items                                          | Conditions           | Min.  | Тур.  | Max.  | Units      |
|--------------------|------------------------------------------------|----------------------|-------|-------|-------|------------|
| VIN                | Operation Input Voltage                        |                      | 4.75  |       | 20    | V          |
| Rds_on             | Static P-Channel MOSFET On<br>State Resistance | VCE=12V; IFB=0V      |       | 90*   |       | mΩ         |
| VFB                | Feedback Voltage                               | VCE=12V; lout=-100mA | 1.198 | 1.222 | 1.246 | V          |
| Fosc               | Oscillator Frequency                           | VCE=12V; lout=-100mA | 500   | 550   | 600   | KHz        |
| IDD                | Quiescent Current (Operating)                  | VCE =12V; VFB =1.4V  |       |       | 350   | μA         |
| lsd                | Shutdown Current                               | VCE =0V              |       |       | 1     | μA         |
| VCEH               | CE "H" Threshold Voltage                       |                      | 1.5   |       |       | V          |
| VCEL               | CE "L" Threshold Voltage                       |                      |       |       | 0.7   | V          |
| ICEH               | CE "H" Input Current                           |                      |       |       | 0.3   | μA         |
| ICEL               | CE "L" Input Current                           |                      | -0.3  |       |       | μA         |
| V <sub>UVLO1</sub> | UVLO Threshold Voltage                         | VIN=VCE=5 to 0V      | 1.5   | 1.9   | 2.3   | V          |
| V <sub>UVLO2</sub> | UVLO Release Voltage                           | VIN=VCE=0 to 5V      | 1.6   | 2.0   | 2.4   | V          |
| Maxdty             | Max. Duty Cycle                                |                      | 100   |       |       | %          |
| Tstart             | Soft-Start Time                                | VCE = 0 to12V        | 5     | 10    | 15    | ms         |
| Tpro               | Debounce Time for Fault<br>Protection          | VCE = 12V; VFB=0     | 500   | 700   | 1000  | μ <b>S</b> |
| LDO                | LDO Output Voltage                             | VIN>6V; VCE=VIN      |       | 5     |       | V          |

\*Ensured by design. Not 100% production tested.

## TYPICAL PERFORMANCE CHARACTERISTICS

| VCC=5V, Ta=25℃ | , unless | otherwise | noted. |
|----------------|----------|-----------|--------|
|----------------|----------|-----------|--------|





# DETAILED DESCRIPTION

The LC2312 consists of a P-channel MOSFET, an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a soft-start circuit, a fault protection circuit, a PWM/PFM alternative circuit, a chip enable circuit, and an input voltage detecting circuit.

### PWM OPERATION

In normal operation, adjusting the width of pulses regulates the system output voltage. It is implemented by regulating the FB voltage 1.222V. The LC2312's at high-gain differential error amplifier and low temperature-drift coefficient reference guarantee the accuracy of output voltage with different input voltage and load conditions. In order to reduce the ripple voltage and improve the loop stability, a high bandwidth error amplifier is designed with a built-in zero. This zero, plus the ESR zero from the output electrolytic capacitor, balances the double poles of the output LC filter. Thus the stepdown system is stable and external compensation network is not required. In practice, a low cost ceramic capacitor paralleling with the upper resistor on feedback resistors divider implements additional phase lead compensation function. the improves dynamic This response performance. In order to improve the efficiency, The LC2312 integrates a low onresistance P-channel MOSFET and well designed driver circuits inside a SOIC 8 package, the power loss is limited at very low level.

### PFM OPERATION

At light load, the error amplifier's output voltage becomes very low and the duty cycle becomes very small. The system switching losses dominate and conduction losses become less important. The LC2312 limits its minimum duty cycle. If the output current is low enough, the output voltage exceeds the desired value and the error amplifier output voltage decreases down to 0.6V, then the

output pulses are disabled and the system output voltage decreases until the error amplifier output ramps up above the threshold of 0.6V. Thus the switching node waveform looks like a pulse-skipping mode. The number of pulses and switching losses are significantly reduced.

#### OSCILLATOR

The oscillator circuit provides a clock to set the converter operating frequency.

#### PROTECTION CIRCUIT

If the duration of maximum duty cycle is long enough, the embedded protection circuit shuts down internal power switch. Then the IC starts a soft start cycle. This procedure repeats until the cause of the protection condition is removed.

#### SOFT-START

A small current charges the soft-start capacitor and raises the internal soft start voltage. The reference voltage follows the soft-start voltage, and limits the speed of voltage rising on the error amplifier output, and hence reduces the speed of rising of output voltage during startup.

#### UVLO

If the input voltage is equal or less than UVLO threshold, the IC goes to standby mode. If the input voltage increases above the UVLO threshold with a hysteresis voltage, the IC starts another soft-start cycle and normal operation.

#### ENABLE (CE)

Logic low on CE puts the LC2312 in shutdown state. In shutdown mode, the output power switch, voltage reference, and other functions are shut off, the supply current is reduced to 1uA maximum.

## NOTIFICATION

Be aware of the following issues while using the LC2312:

Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, the power rails and SW connection should be short. In addition, a ceramic capacitor should be closely connected between LDO and GND pins. Make sufficient grounding and reinforce supplying.

If the difference between input and output voltage is too small, the maximum duty cycle may last long enough to trigger the maximum duty-cycle protection.

If input voltage is below 6V, the LDO output may drop below 5V, and the maximum duty cycle may be limited. The accuracy of load regulation may be limited by current capability if output voltage gets close to input voltage.

If the duty cycle in PWM mode needs to be less than the minimum duty cycle to go to PFM mode, the IC switches to PFM mode to reduce switching frequency and standby current. However, if the ratio of output voltage vs. input voltage is low enough (for example, Vin>12V and Vout=1.5V), even if the load current is large, the IC keeps in PFM mode, and the ripple of output voltage may increase.

## COMPONENTS SELECTION

#### INDUCTOR

High inductance gives low inductor ripple current but requires larger size inductor to avoid saturation. Low ripple current reduces inductor core losses. It also reduces RMS current through inductor and switches, and hence reduces conduction loss. Usually, peak to peak current of inductor is designed to be 20% to 30% of output current

#### DIODE

Use a diode with low forward voltage drop and high switching speed. (Schottky type is recommended.)

Reverse voltage rating should be more than the input voltage, and current rating should be more than maximum load current.

#### CAPACITORS

The primary function of output capacitor is to smooth the inductor current. The actual output ripple voltage is a function of this capacitor's ESR (Equivalent Series Resistance). Normally, the ESR of this capacitor should not exceed the rated ripple voltage divided by the ripple current through the inductor.

As for input capacitor, use a capacitor with low ESR and a capacity of at least  $10 \,\mu$  F for stable operation.

# DEMO BOARD SCHEMATICS



## DEMO BOARD BOM

#### Table 1 Bill of Materials

| No. | Reference | Туре      | Specification                     | Note             |
|-----|-----------|-----------|-----------------------------------|------------------|
| 1   | C1A       | Capacitor | Tantalum Capacitor; 25V/10uF; SMD |                  |
| 2   | C1B       | Capacitor | Open                              |                  |
| 3   | C2        | Capacitor | MLCC 0.01uF; SMD 1206             |                  |
| 4   | C3        | Capacitor | MLCC 0.1uF; SMD 1206              |                  |
| 5   | C4A       | Capacitor | Tantalum 100uF; SMD 1206          |                  |
| 6   | C4B       | Capacitor | MLCC 0.1uF; SMD 1206              |                  |
| 7   | D1        | Diode     | SS34; 40V, 3A; SMD                |                  |
| 8   | L1        | Inductor  | 22uH; 3A; SMD, Shielding          |                  |
| 9   | IC1       | IC        | LC2312; SMD SOIC 8                |                  |
| 10  | R1A~R1E   | Resistor  | SMD 1206; 1%                      | Refer to Table 2 |
| 11  | R2A~R2E   | Resistor  | SMD 1206; 1%                      | Refer to Table 2 |

#### Table 2 Feedback Resistors Selection

| Vout  | R1A | R1B | R1C | R1D | R1E | R2A | R2B | R2C | R2D | R2E  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 1.8V  | 30K |     |     |     |     | 62K |     |     |     |      |
| 2.5V  |     | 51K |     |     |     |     | 47K |     |     |      |
| 3.3V  |     |     | 27K |     |     |     |     | 16K |     |      |
| 5.0V  |     |     |     | 56K |     |     |     |     | 18K |      |
| 12.3V |     |     |     |     | 39K |     |     |     |     | 4.3K |

## DEMO BOARD MEASUREMENT



# PACKAGE LINE

